Preprint
Article

Ramsey’s Theory Meets The Human Brain Connectome

Altmetrics

Downloads

296

Views

373

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

23 September 2021

Posted:

23 September 2021

You are already at the latest version

Alerts
Abstract
Ramsey’s theory (RAM) from combinatorics and network theory goes looking for regularities and repeated patterns inside structures equipped with nodes and edges. RAM represents the outcome of a dual methodological commitment: by one side a top-down approach evaluates the possible arrangement of specific subgraphs when the number of graph’s vertices is already known, by another side a bottom-up approach calculates the possible number of graph’s vertices when the arrangement of specific subgraphs is already known. Since natural neural networks are often represented in terms of graphs, we suggest to utilize RAM for the analytical and computational assessment of a peculiar structure supplied with neuronal vertices and axonal edges, i.e., the human brain connectome. We discuss how a RAM approach in neuroscientific issues might be able to locate and trace unexplored motifs shared between different cortical and subcortical subareas. Furthermore, we will describe how notable RAM outcomes, such as the Ramsey’s theorem and the Ramsey’s number, could contribute to uncover still unknown anatomical connexions endowed in neuronal networks and unexpected functional interactions among grey zones of the human brain.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated