Preprint
Article

Functoriality of the Schmidt Construction

Altmetrics

Downloads

211

Views

645

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

24 September 2021

Posted:

27 September 2021

You are already at the latest version

Alerts
Abstract
After proving, in a purely categorial way, that the inclusion functor InAlg(Σ) from Alg(Σ), the category of many-sorted Σ-algebras, to PAlg(Σ), the category of many-sorted partial Σ-algebras, has a left adjoint FΣ, the (absolutely) free completion functor, we recall, in connection with the functor FΣ, the generalized recursion theorem of Schmidt, which we will also call the Schmidt construction. Next we define a category Cmpl(Σ), of Σ-completions, and prove that FΣ, labeled with its domain category and the unit of the adjunction of which it is a part, is a weakly initial object in it. Following this we associate to an ordered pair (α,f), where α=(K,γ,α) is a morphism of Σ-completions from F=(C,F,η) to G=(D,G,ρ) and f a homomorphism in D from the partial Σ-algebra A to the partial Σ-algebra B, a homomorphism ΥαG,0(f):Schα(f)B. We then prove that there exists an endofunctor, ΥαG,0, of Mortw(D), the twisted morphism category of D, thus showing the naturalness of the previous construction. Afterwards we prove that, for every Σ-completion G=(D,G,ρ), there exists a functor ΥG from the comma category (Cmpl(Σ)↓G) to End(Mortw(D)), the category of endofunctors of Mortw(D), such that ΥG,0, the object mapping of ΥG, sends a morphism of Σ-completion in Cmpl(Σ) with codomain G, to the endofunctor ΥαG,0.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated