Preprint
Article

Second Harmonic Generation in Lithiated Silicon Nanowires: Derivations and Computational Methods

Altmetrics

Downloads

221

Views

280

Comments

1

This version is not peer-reviewed

Submitted:

27 September 2021

Posted:

28 September 2021

You are already at the latest version

Alerts
Abstract
This research will examine the computational methods to calculate the nonlinear optical process of second harmonic generation (SHG) that will be hypothesized to be present during lithium ion insertion into silicon nanowires. First it will be determined whether the medium in which SHG is conveyed is non-centrosymmetric or whether the medium is inversion symmetric where SHG as a part of the second-order nonlinear optical phenomenon does not exist. It will be demonstrated that the main interaction that determines SHG is multiphoton absorption on lithium ions. The quantum harmonic oscillator (QHO) is used as the background that generates coherent states for electrons and photons that transverse the length of the silicon nanowire. The matrix elements of the Hamiltonian which represents the energy of the system will be used to calculate the probability density of second-order nonlinear optical interactions which includes collectively SHG, sum-frequency generation (SFG) and difference-frequency generation (DFG). As a result it will be seen that at varies concentrations of lithium ions (Li+) within the crystallized silicon (c-Si) matrix the second-order nonlinear optical process has probabilities substantial enough to create second harmonic generation that could possibly be used for such applications as second harmonic imaging microscopy.
Keywords: 
Subject: Physical Sciences  -   Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated