Preprint
Article

On Weakly S-Primary Ideals of Commutative Rings

Altmetrics

Downloads

404

Views

451

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

27 September 2021

Posted:

29 September 2021

You are already at the latest version

Alerts
Abstract
Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. The purpose of this paper is to introduce the concept of weakly S-primary ideals as a new generalization of weakly primary ideals. An ideal I of R disjoint with S is called a weakly S-primary ideal if there exists s∈S such that whenever 0≠ab∈I for a,b∈R, then sa∈√I or sb∈I. The relationships among S-prime, S-primary, weakly S-primary and S-n-ideals are investigated. For an element r in any general ZPI-ring, the (weakly) S_{r}-primary ideals are charctarized where S={1,r,r²,⋯}. Several properties, characterizations and examples concerning weakly S-primary ideals are presented. The stability of this new concept with respect to various ring-theoretic constructions such as the trivial ring extension and the amalgamation of rings along an ideal are studied. Furthermore, weakly S-decomposable ideals and S-weakly Laskerian rings which are generalizations of S-decomposable ideals and S-Laskerian rings are introduced.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated