Preprint
Review

Epigenetic Modifications in Plant Development and Reproduction

Altmetrics

Downloads

281

Views

254

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

27 September 2021

Posted:

30 September 2021

You are already at the latest version

Alerts
Abstract
Plants are exposed to highly fluctuating effects of light, temperature, weather conditions and many other environmental factors throughout their life. As sessile or-ganisms, unlike animals, they are unable to escape, hide or even change their position. Therefore, the growth and development of plants is largely determined by interaction with the external environment, the success of this interaction depends on the ability of the phenotype plasticity, which is largely determined by epigenetic regulation. In addi-tion to how environmental factors can change the patterns of genes expression, epige-netic regulation determines how genetic expression changes during the differentiation of one cell type into another, and how patterns of gene expression are passed from one cell to its descendants. Thus, one genome can generate many 'epigenomes'. Epigenetic modifications acquire special significance during the formation of gametes and plant reproduction, when epigenetic marks are eliminated during meiosis and early embry-ogenesis and later reappear. However, during asexual plant reproduction, when meio-sis is absent or suspended, epigenetic modifications that have arisen in the parental sporophyte can be transmitted to the next clonal generation practically unchanged. In plants that reproduce sexually and asexually, epigenetic variability has different adap-tive significance. In asexuals, epigenetic regulation is of particular importance for im-parting plasticity to the phenotype, when the genotype remains unchanged for many generations of individuals. Of particular interest is the question of the possibility of transferring acquired epigenetic memory to future generations and its potential role for natural selection and evolution. All these issues will be discussed to some extent in this review. In the last two decades, a lot of data on the epigenetic regulation of plants has appeared, as well as works summarizing the accumulated knowledge (Verhoeven and Preite 2013; Pikaard and Scheid 2014; Gehring 2019; Ono and Kinoshita 2021), nevertheless, many questions remain unclear, and a number of results are contradic-tory. New in this area data is constantly emerging. We tried to take into account and discuss the main findings and conclusions in this field.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated