Submitted:
15 April 2025
Posted:
16 April 2025
You are already at the latest version
Abstract
We presented a modified form of Emergent Gravity (EG), using the Holographic Principle and Vopson's Mass-Energy-Information Equivalence Principle (MEIEP). We use MEIEP to distinguish the type of information contained between a black hole and an ordinary gravitating object. We have shown that there is a way to have a model of EG that allows for the First Law of Thermodynamics to be violated at the Planck and Quantum level with a consequence that can be negligible in stellar scale and "corrective" in galactic scale, at the Macroscopic level. Combining the correction imposed by Special Relativity, the model gave results similar to General Relativity without necessarily going geometric in interpretation. Lastly, we have found a way to resolve the problem of quantum decoherence, where quantum entanglement can be unified with gravity.
Keywords:
1. Introduction
2. Beyond Holographic Principle
3. Vopson’s Equivalence Principle
4. Gravity in Stellar Scale
4.1. Modified Newtonian Gravity
4.2. Relativistic Form of the Model
4.3. Horizon Mass and Gravitational Redshift
4.4. Perihelion Shift of Mercury
4.5. Deflection of Light
5. Gravity in Galactic Scale
5.1. MOND Equation
5.2. Tully-Fisher Relation
5.3. External Field Effect
6. GR as a Special Case
7. On Quantum Coherence
8. Conclusions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- K. Jusufi, A. F. K. Jusufi, A. F. Ali, A. Yasser, N. Inan, A.Y. Ellithi, Modified Gravity/Entropic Gravity Correspondence due to Graviton Mass, Annals of Physics, Vol. 2024. [Google Scholar]
- M. Senay, Entropic Gravity Corrected by q-statistics, and its implications to Cosmology, Phys. Lett. B,Vol. 2021.
- M. Bojowald and E. Duque, Emergent Modified Gravity Coupled to Scalar Matter, Phys. Rev. 2 April 0840.
- A. Sheykhi and K. 2012.
- E. 2021; 93.
- A. Schlatter and R. E. Kastner, Gravity from Transactions: Fulfilling the entropic gravity program, J. Phys. Commun. 2023.
- M. Zumalacárregui, Modified Entropic Gravity and Cosmology, AIP Conf. Proc. 1458. [CrossRef]
- C. C., Dyer and D. B., Cline, (2023). Testing Emergent Gravity with Gravitational Wave Observations." Physical Review D, 107(2), 024031. [CrossRef]
- D. E., Soper, (2023). The Controversies Surrounding Emergent Gravity." Foundations of Physics, 53(3), 1-15. [CrossRef]
- E. Verlinde, On the Origin of Gravity and the Laws of Newton. J. High Energy. Phys. 2011.
- T. Padmanabhan, Emergent Gravity Paradigm: Recent Progress Modern Physics Letters A 2015 30, 2015.
- A. Kobakhidze, Gravity is not an Entropic Force, Phys. Rev. D 83, 021502(R)Vol. 83, Iss. 2 15 Jan. 2011, Once More: Gravity is not an Entropic Force arXiv:1108. 4161.
- S. Gao, Is Gravity an Entropic Force? 28 April 2011.
- ZW. Wang, S.L. ZW. Wang, S.L. Braunstein, Surfaces Away from Horizons are not Thermodynamic. Nat Commun 9, 2977 (2018).
- Wang, Tower (2012). "Modified entropic gravity revisited". arXiv:1211.5722 [hep-th].
- A. Kobakhidze (2011). "Gravity is not an entropic force". Physical Review D. arXiv:1009.5414.
- M. Chaichian, M. M. Chaichian, M. Oksanen, and A. Tureanu (2011). "On gravity as an entropic force". Physics Letters B. 702 (5): 419–421. arXiv:1104.4650.
- J.D. 1973.
- S. W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D 13, 191, 15 Jan. 1976.
- A. 0 5292v1.
- M. M. Vopson; The Mass-Energy-Information Equivalence Principle. AIP Advances ; 9 (9): 095206. 1 September.
- A. Berut, A Arakelyan, A. Pretrosyan, S. Ciliberto, R. Dillenschneider, and E. 2012.
- M. M. 1053; 11.
- M. M. Vopson; Experimental protocol for testing the mass-energy–information equivalence principle. AIP Advances ; 12 (3): 035311. 1 March.
- J. Bekenstein, Relativistic Gravitation Theory for the Modified Newtonian Dynamics Paradigm, Phys. Rev. D 70, 083509 – Published ; Erratum Phys. Rev. 13 October 0699; 71.
- M. Milgrom, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis". Astrophysical Journal. 3: 270, 1983.
- Y. K. 1: Ha, Horizon Mass Theorem, International Journal of Modern Physics D 2005 14, 2005; :12.
- J.D. Brown and J.W. York, Jr., Phys. J.D. Brown and J.W. York, Jr., Phys. Rev. D 47, 1407 (1993).
- J.W. Maluf, J. J.W. Maluf, J. Math. Phys. 36, 4242 (1995).
- Y.K. Ha, Gen. Rel. Grav. 35, 2045 (2003).
- W. Engelhardt, Free Fall in Gravitational Theory Physics Essay, Vol. 2017.
- N.V. Kupryaev, Concerning the Paper by A. Einstein ``Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity”. Russ Phys J 61, 648–653 (2018).
- H. Di, ``Einstein’s Explanation of Perihelion Motion of Mercury”, ed. Smarandache, Florentin. Unsolved Problems in Special and General Relativity: 21 Collected Papers (2013).
- O. Biesel, The Precession of Mercury’s Perihelion, https://sites.math.washington.edu/ morrow/papers/Genrel.
- E. F.Taylor and J.A. I: Wheeler, 2000 Exploring Black Holes, 2000.
- K.L. Kou, (2021), Modified Newton’s Gravitational Theory to Explain Mercury Precession and Light Deflection. Open Access Library Journal, 8: e7794.
- R. Wayne, Explanation of the Perihelion Motion of Mercury in Terms of a Velocity-Dependent Correction to Newton’s Law of Gravitation, The African Review of Physics (2015) 10, 2015.
- C.J. de Matos, and M. Tajmar, Advance of Mercury Perihelion Explained by Cogravity, Reference Frames and Gravitomagnetism. 01, 339-345. 20 July.
- J. Bootello, Angular Precession of Elliptic Orbits. Mercury, International Journal of Astronomy and Astrophysics, 2012, 2, 249–255.
- S. D. Mathur, The Elastic Vacuum, Int. J. of Mod. Phys. D, Vol. 30, No. 2141; 14.
- W. H. Zurek ( 44, 36.
- W.H. Zurek, (2003) Reviews of Modern Physics, 75, 715.
- J.A.Q. Abanto, Deformed Special Relativity using a Generalized ’t Hooft-Nobbenhuis Complex Transformation, Proceedings of the Samahang Pisika ng Pilipinas 39, SPP-2021-3B-05 (2021). URL: https://proceedings.spp-online.org/article/view/SPP-2021-3B-05.
- M. Milgrom, R.H. M. Milgrom, R.H. 2008. [Google Scholar]
- L. Blanchet, J. L. Blanchet, J. 20 April 2530; 4. [Google Scholar]
- G.N. Candlish, R. G.N. Candlish, R. Smith, Y. Jaffe, A. 20 November 5362; 4. [Google Scholar]
- Duric, N. 2004.
- A. Vale, J.P. A. Vale, J.P. 20 September; 1.
- F.R. Klinkhamer, Entropic-Gravity Derivation of MOND, Modern Physics Letters A 2012 27:11.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
