The aim of this work is to explain the behaviour of the multiresistance percentage of Pseudomona aeruginosa in some countries of Europe through a multivariate statistical analysis and machine learning validation, using data from the European Antimicrobial Resistance Surveillance System, the World Health Organization and the World Bank. First, we will use a descriptive analysis and a principal components analysis. Then, we use a k-means clustering to determine the countries and regions that are most affected by the antibiotic resistance. Second, we expand the database by adding some socioeconomic, governance and antibiotic-consumption variables. We then run a data panel regression analysis to determine some functions that relates the multiresistance percentage with those new variables. Finally, we use machine learning techniques to validate a pooling panel data case, using XGBoost and random forest algorithms. The results of the data panel analysis indicate that the most important variables for the multiresistance percentage are corruption control and the rule of law. Similar results are found with the machine learning validation analysis, where the human development index is an additional important variable for the multiresistance percentage.
Keywords:
Subject: Computer Science and Mathematics - Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.