Pancreatic cancer leads the most common lethal tumor in America. This lethality is related to limited treatment options. Conventional treatments involve a non-specific use of chemotherapeutical agents like 5-FU, capecitabine, gemcitabine, cisplatine, oxaliplatine, or irinotecan, that produce several side effects. This review we focus on the use of targeted nanoparticles as an alternative to the standard treatment for the pancreatic cancer. The principal objective of the use of nanoparticles is the reduction in side effects that conventional treatments produce, mostly because of their nonspecificity. Currently, several molecular markets of pancreatic cancer cells have been studied to target nanoparticles and improve the actual treatment. Therefore, properly functionalizated nanoparticles with specific aptamers or antibodies can be used to recognize pancreatic cancer cells and once cancer is recognized, these nanoparticles can attack the tumor by drug delivery, hyperthermia, or gene therapy.
Keywords:
Subject: Chemistry and Materials Science - Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.