To achieve the near zero emission of wastewater in the flue gas desulfurization (FGD) system in coal-fired power plant and better utilize the exhaust heat from flue gas, a feasible technology of spraying FGD wastewater in the flue duct for evaporation is discussed in the present study. A full-scale influencing factor investigation on the wastewater droplet evaporation performance is established under the Eulerian-Lagrangian model numerically. The dominant factors, including the characters of wastewater droplets, flue gas and the spray nozzles were analyzed under different conditions, respectively. Considering the multiple factors and conditions in the process, a Least-Square support vector machine (LSSVM) model is introduced to predict the evaporation rate based on the numerical results. Conclusions are made that the flue gas temperature and droplet diameter are of great importance in the evaporation process. The spray direction of droplet parallel with the flue gas flow direction is profitable for the dispersion of droplet, resulting the maximal evaporation rate. A double-nozzle arrangement optimized with relatively small flow rate is recommended. The LSSVM model can accurately predict the evaporation rate using the numerical results with different conditions.
Keywords:
Subject: Engineering - Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.