Preprint
Article

Impact of Residual Stress on a Polysilicon Channel in Scaled 3D NAND Flash Memory

Altmetrics

Downloads

457

Views

413

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 October 2021

Posted:

21 October 2021

You are already at the latest version

Alerts
Abstract
The effects of residual stress in a tungsten gate on a polysilicon channel in scaled 3D NAND flash memories were investigated using a technology computer-aided design simulation. The NAND strings with respect to the distance from the tungsten slit were also analyzed. The scaling of the spacer thickness and hole diameter induced compressive stress on the polysilicon channel. Moreover, the residual stress of polysilicon in the string near the tungsten slit had greater compressive stress than the string farther away. The increase in compressive stress in the polysilicon channel degraded the Bit-Line current (Ion) because of stress-induced electron mobility deterioration. Moreover, a threshold voltage shift (△Vth) occurred in the negative direction because of conduction band lowering.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated