There is experimental evidence of high vibronic activity that accompanies the strongly allowed transition between the ground state and the lowest electronic singlet excited state of oligofurans that contain 2,3, and 4 furan rings. The absorption and emission spectra of the three lowest oligofurans measured in liquid nitrogen temperature show distinct fine structures that are reproduced using the projection-based model of vibronic coupling (with Dushinsky rotation included) parameterized utilizing either DFT (with several different exchange-correlation functionals) or ab initio (CC2) quantum chemistry calculations. Using as reference the experimental data concerning the electronic absorption and fluorescence for the 8 lowest oligofurans we first analyze the performance of the exchange-correlation functionals for the electronic transition energies and the reorganization energies. Subsequently, we use the best functionals alongside the CC2 method to explore how the reorganization energies are distributed among the totally symmetric vibrations, identify the normal modes that dominate in the fine structures present in the absorption and emission bands, and trace their evolution with the increasing number of rings in the oligofuran series. Confrontation of the simulated spectra with the experiment allows for verification of the performance of the selected DFT functionals and the CC2 method.