Seaports are well known as the medium that has evolved into the central link between sea and land for complex marine activities. The growth in maritime logistics especially necessitates a large volume of energy supply to maintain the operation of sea trade, resulting in an imbalance between the generation and demand sides. Future projections for three major concerns show an increase in load demand, cost of operation, and environmental issues. In order to overcome these problems, integrating microgrids as an innovative technology in the seaport power system appears to be a vital strategy. It is believed that microgrids enhance the seaport operation by providing sustainable, environmentally friendly, and cost-effective energy. Despite the fact that microgrids are well established and widely used in a variety of operations on land, their incorporation into the seaport is still limited. The involvement of a variety of heavy loads such as all-electric ships, cranes, cold ironing, and buildings infrastructure makes it a complicated arrangement task in several aspects, which necessitate further research and leave space for improvement. In this paper, an overview of the seaport microgrids in terms of their concepts, requirements, and operation management is presented. It provides the perspectives of integrating the microgrid concept into a seaport from both shore side and seaside as a smart initiative for the green ports vision. Future research directions are discussed towards the development of more efficient marine power system.
Keywords:
Subject: Engineering - Marine Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.