Microgrid is one of the promising green transition technologies that will provide enormous benefit to the seaport, as a solution to the major concerns in this sector, namely energy crisis, economical and environmental pollution. However, finest design of the microgrid is a challenging task considering different objectives, constraints and uncertainties involved. To ensure the optimal operation of the system, determining the right configuration framework and size for each component in the seaport microgrid at the minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system of seaport microgrid with optimally sized component .The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system and cold ironing as seaport’ loads. The architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering a few parameters such as solar global horizontal irradiance, temperature and wind resources. Then, the best configuration framework is analyzed in terms of economic feasibility, energy reliability and environmental impact.
Keywords:
Subject: Engineering - Marine Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.