Preprint
Article

Application of ALO-ELM in Load Forecasting Based on Big Data

Altmetrics

Downloads

201

Views

203

Comments

0

This version is not peer-reviewed

Submitted:

19 October 2021

Posted:

21 October 2021

You are already at the latest version

Alerts
Abstract
The load of power system changes with the development of economy, short-term load forecasting play a very important role in dispatching and management of power system. In this paper, the Ant Lion Optimizer (ALO) is introduced to improve the input weights and hidden-layer Matrix of extreme learning machine (ELM), after the parameters of ELM are optimized by ALO, then input nodes, hidden layer nodes and output nodes are determined, so a load forecasting model based on ALO-ELM combined algorithm is established. The proposed method is illustrated based on the historical load data of a city in China. The results show that the average absolute error of short-term load demand predicted by ALO-ELM model is 1.41, while that predicted by ELM is 4.34, the proposed ALO-ELM algorithm is superior to the ELM and meet the requirements of engineering accuracy, which proves the effectiveness of proposed method.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated