Preprint
Article

Investigation of the Extrapolation Capability of an Artificial Neural Network Algorithm in Combination With Process Signals in Resistance Spot Welding of Advanced High-Strength Steels

Altmetrics

Downloads

181

Views

200

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

26 October 2021

Posted:

27 October 2021

You are already at the latest version

Alerts
Abstract
Resistance spot welding is an established joining process in the production of safety-relevant components in the automotive industry. Therefore, a consecutive process monitoring is essential to meet the high-quality requirements. Artificial neural networks can be used to evaluate the process parameters and signals to ensure the individual spot weld quality. The predictive accuracy of such algorithms depends on the provided training data set and the prediction of untrained data is challenging. The aim of this paper is to investigate the extrapolation capability of the multi-layer perceptron model. That means, that the predictive performance of the model will be tested with data that clearly differs from the training data in terms of material and coating composition. Therefore, three multi-layer perceptron regression models were implemented to predict the nugget diameter from process data. The three models were able to predict the trained datasets very well. The models, which were provided with features from the dynamic resistance curve predicted the new dataset better than the model with only process parameters. This study shows the beneficial influence of the process signals on the predictive accuracy and robustness of artificial neural network algorithms. Especially, when predicting a data set from outside of the training space.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated