Preprint
Article

Evaluation and Improvement of a Transformerless High-Efficiency DC-DC Converter for Renewable Energy Applications Employing a Fuzzy Logic Controller

Altmetrics

Downloads

469

Views

250

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

25 October 2021

Posted:

27 October 2021

You are already at the latest version

Alerts
Abstract
This article discusses a transformer-free, high-efficiency DC-DC converter besides renewable energy applications. The traditional buck-boost, classic Zeta, Sepic, and Cuk converter does have the benefits of a simple design, low cost, as well as the capacity to execute voltage step-up and step-down. Conversely, because of the detrimental consequences of the parasitic constraints of the device, the voltage conversion gain of the traditional DC-DC converter is much more restricted and the efficiency is also significantly smaller, whereas this proposed converter does have a higher voltage gain and efficiency because it is used in a single power switch, resulting in reduced switching losses and voltage stress. The said converter's design is very simple, which simplifies the operation control and reduces switching and conduction losses, leading to an efficiency of 97.4 percent. This converter seems to have the same capabilities as the Zeta converter, including continuous desired output current and desired buck-boost operation. Such an article offers the operation principle and steady evaluation, as well as a comparison with other existing high step-up configurations. The proposed converter employs a fuzzy logic controller, which improves the voltage level as well as reduces the time taken to set the voltage output of a conventional PI and ANN controller, especially in comparison to the FLC controller. For deployment, Experimental Result and MATLAB/Simulink has been used, and the modeling results indicate that the proposed controller performance has improved
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated