Submitted:
16 January 2023
Posted:
17 January 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Design and Materials


3. Heat Transfer Analysis
4. Conclusion
References
- The Physical Principles of Thermonuclear Explosive Devices. Von F. Winterberg, Fusion Energy Foundation, 1981 (New York/N.Y. 10019, 888 Seventh Ave), 144 S. $ 9.95. Physik in unserer Zeit, 1983. 14(5): p. 160-160.
- Siracusa, J.M. Nuclear Weapons: A Very Short Introduction; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Barnaby, F. How to Build a Nuclear Bomb: And Other Weapons of Mass Destruction; Nation Books, 2004. [Google Scholar]
- Wellerstein, A. John Wheeler’s H-bomb blues. Physics Today 2019, 72, 42–51. [Google Scholar] [CrossRef]
- Holloway, D. Special Issue: New Light on Early Soviet Bomb Secrets. Phys. Today 1996, 49, 26–27. [Google Scholar] [CrossRef]
- Jonter, T. Getting rid of the Swedish bomb. Phys. Today 2019, 72, 40–47. [Google Scholar] [CrossRef]
- Hansen, C. The Swords of Armageddon; Chukelea publications, 2007. [Google Scholar]
- Sandel, F.L.; Niimura, M.; Robertson, S.H.; Gross, R.A. Focusing of fast plasma shock waves. Phys. Fluids 1975, 18, 1075–1076. [Google Scholar] [CrossRef]
- Winterberg, F. Shock wave focusing by curved walls and staging of beam induced thermonuclear microexplosions. J. Plasma Phys. 1976, 16, 81–94. [Google Scholar] [CrossRef]
- Winterberg, F. Thermonuclear microexplosion ignition by imploding a disk of relativistic electrons. Phys. Plasmas 1995, 2, 733–740. [Google Scholar] [CrossRef]
- Winterberg, F. Adiabatic wall focusing of intense ion beams for the ignition of thermonuclear microexplosions. Zeitschrift für Physik A Atoms and Nuclei 1977, 282, 3–6. [Google Scholar] [CrossRef]
- Winterberg, F. Thermonuclear micro-explosions with intense ion beams. Nature 1974, 251, 44–46. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Wei, S.; He, F.; Tasan, C.C. Metastability in high-entropy alloys: A review. J. Mater. Res. 2018, 33, 2924–2937. [Google Scholar] [CrossRef]
- Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal. 2020, 10, 11280–11306. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Q.; Lu, J.; Liu, C.; Yang, Y. Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater. 2015, 104, 53–55. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Q.; Lu, J.; Liu, C.; Yang, Y. High-entropy alloy: challenges and prospects. Mater. Today 2015, 19, 349–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Sonkusare, R.; Janani, P.D.; Gurao, N.; Sarkar, S.; Sen, S.; Pradeep, K.; Biswas, K. Phase equilibria in equiatomic CoCuFeMnNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 269–278. [Google Scholar] [CrossRef]
- Guo, T.; Li, J.; Wang, J.; Wang, W.Y.; Liu, Y.; Luo, X.; Kou, H.; Beaugnon, E. Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing. Mater. Sci. Eng. A 2018, 729, 141–148. [Google Scholar] [CrossRef]
- Kaushik, L.; Kim, M.-S.; Singh, J.; Kang, J.-H.; Heo, Y.-U.; Suh, J.-Y.; Choi, S.-H. Deformation mechanisms and texture evolution in high entropy alloy during cold rolling. Int. J. Plast. 2021, 141. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Bhattacharjee, P. Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy. Mater. Charact. 2015, 109, 189–197. [Google Scholar] [CrossRef]
- Sathiaraj, G.; Tsai, C.; Yeh, J.; Jahazi, M.; Bhattacharjee, P. The effect of heating rate on microstructure and texture formation during annealing of heavily cold-rolled equiatomic CoCrFeMnNi high entropy alloy. J. Alloy. Compd. 2016, 688, 752–761. [Google Scholar] [CrossRef]
- Shabani, A.; Toroghinejad, M.R. Evaluation of microstructure and texture formation during annealing of cold-rolled FeCrCuMnNi multiphase high-entropy alloy. Trans. Nonferrous Met. Soc. China 2020, 30, 449–462. [Google Scholar] [CrossRef]
- Wani, I.; Bhattacharjee, T.; Sheikh, S.; Clark, I.; Park, M.; Okawa, T.; Guo, S.; Bhattacharjee, P.; Tsuji, N. Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 2017, 84, 42–51. [Google Scholar] [CrossRef]
- Cho, K.; Fujioka, Y.; Nagase, T.; Yasuda, H.Y. Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase. Mater. Sci. Eng. A 2018, 735, 191–200. [Google Scholar] [CrossRef]
- Gwalani, B.; Wang, T.; Jagetia, A.; Gangireddy, S.; Muskeri, S.; Mukherjee, S.; Lloyd, J.T.; Banerjee, R.; Mishra, R.S. Dynamic Shear Deformation of a Precipitation Hardened Al0.7CoCrFeNi Eutectic High-Entropy Alloy Using Hat-Shaped Specimen Geometry. Entropy 2020, 22, 431. [Google Scholar] [CrossRef] [PubMed]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196. [Google Scholar] [CrossRef]
- Sinha, S.; Nene, S.; Frank, M.; Liu, K.; Mishra, R.; McWilliams, B.; Cho, K. Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation. Materialia 2019, 6, 100310. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yang, T.; Tong, Y.; Wang, J.; Luan, J.H.; Jiao, Z.B.; Chen, D.; Yang, Y.; Hu, A.; Liu, C.T.; et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Materialia 2017, 138, 72–82. [Google Scholar] [CrossRef]
- Xia, S.-Q.; Wang, Z.; Yang, T.-F.; Zhang, Y. Irradiation Behavior in High Entropy Alloys. J. Iron Steel Res. Int. 2015, 22, 879–884. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Pukenas, A.; Skrotzki, W. Texture formation in face-centered cubic high-entropy alloys. J. Alloy. Compd. 2020, 826, 154183. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, Z.; Chen, Q. Deformation twinning mechanism in hexagonal-close-packed crystals. Sci. Rep. 2019, 9, 618. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.; Tomé, C.; Wang, J. A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater. Sci. Eng. A 2012, 555, 93–98. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.; Wang, J.; Tomé, C. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast. 2013, 49, 36–52. [Google Scholar] [CrossRef]
- Zhao, S.; Stocks, G.M.; Zhang, Y. Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Mater. 2017, 134, 334–345. [Google Scholar] [CrossRef]
- Asoushe, M.; Hanzaki, A.Z.; Abedi, H.; Mirshekari, B.; Wegener, T.; Sajadifar, S.; Niendorf, T. Thermal stability, microstructure and texture evolution of thermomechanical processed AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Sci. Eng. A 2020, 799, 140012. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Mara, N.A.; Bhattacharyya, D.; Alexander, D.J.; Necker, C.T. Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int. J. Plast. 2011, 27, 121–146. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Sathiaraj, G.; Zaid, M.; Gatti, J.; Lee, C.; Tsai, C.-W.; Yeh, J.-W. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloy. Compd. 2013, 587, 544–552. [Google Scholar] [CrossRef]
- Haase, C.; Barrales-Mora, L.A. Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 2018, 150, 88–103. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, T.; Zhao, D.; Ma, S.; Li, Q.; Wang, Z. Mechanical behaviors and texture evolution of CoCrFeNi high-entropy alloy under shear-tension deformation. J. Alloy. Compd. 2019, 815, 152479. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Bhattacharjee, P.; Tsai, C.-W.; Yeh, J.-W. Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Wani, I.; Sathiaraj, G.D.; Ahmed, M.; Reddy, S.; Bhattacharjee, P. Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al0.5CoCrFeMnNi high entropy alloy. Mater. Charact. 2016, 118, 417–424. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Bhatta, L.; Kong, C.; Yu, H. Study of Texture Analysis on Asymmetric Cryorolled and Annealed CoCrNi Medium Entropy Alloy. Crystals 2020, 10, 1154. [Google Scholar] [CrossRef]
- Fang, Q.; Chen, Y.; Li, J.; Jiang, C.; Liu, B.; Liu, Y.; Liaw, P.K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int. J. Plast. 2018, 114, 161–173. [Google Scholar] [CrossRef]
- Laplanche, G.; Horst, O.; Otto, F.; Eggeler, G.; George, E. Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing. J. Alloy. Compd. 2015, 647, 548–557. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Clayton, J.D. Deformation Twinning in Single Crystals. In Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids; Clayton, J.D., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 275–327. [Google Scholar]
- Huang, S.; Huang, H.; Li, W.; Kim, D.; Lu, S.; Li, X.; Holmström, E.; Kwon, S.K.; Vitos, L. Twinning in metastable high-entropy alloys. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Sun, S.; Tian, Y.; Lin, H.; Yang, H.; Dong, X.; Wang, Y.; Zhang, Z. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng. A 2017, 712, 603–607. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
