The lateral pressure generated by liquefied soil on pile is a critical parameter in the analysis of soil-pile interaction in liquefaction-susceptible sites. Previous studies have shown that liquefied sand behaves like a non-Newton fluid, and its effect on piles has rate-dependent properties. In this study, a simplified pseudo-static method for liquefiable soil-pile interaction analysis is proposed by treating the liquefied soil as a thixotropic fluid, which considers the rate-dependent behavior. The viscous shear force generated by the relative movement between the viscous fluid (whose viscosity coefficient varies with excess pore pressure and shear strain rate) and the pile was assumed to be the lateral load on the pile. The results from the simplified analysis show that the distribution of bending moment is in good agreement with experiments data. Besides, the effects of various parameters, including relative density, thickness ratio of non-liquefiable layer to liquefiable layer, and frequency of input ground motion, on the pile-soil rate-dependent interaction were discussed in detail.
Keywords:
Subject: Engineering - Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.