Connexin 43 (Cx43) is expressed in kidneys and constitutes a feedforward mechanism leading to inflammation in other tissues where they form hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analyses of ethidium uptake and thiobarbituric acid reactive species revealed that TNF-α plus IL-1β increase Cx43 hemichannel activity and oxidative stress in MES-13 cells, a cell line derived from mesangial cells. The latter also was accompanied by a reduction in gap junctional communication, whereas western blotting analysis showed a progressive increase of phosphorylated MYPT (a substrate of RhoA/ROCK) and Cx43 upon TNF-α/IL-1β treatment. Additionally, inhibition of RhoA/ROCK strongly diminished the TNF-α/IL-1β-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.
Keywords:
Subject: Biology and Life Sciences - Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.