The rapid infiltration of fake news is a flaw to the otherwise valuable internet, a virtually global network that allows for the simultaneous exchange of information. While a common, and normally effective, approach to such classification tasks is designing a deep learning-based model, the subjectivity behind the writing and production of misleading news invalidates this technique. Deep learning models are unexplainable in nature, making the contextualization of results impossible because it lacks explicit features used in traditional machine learning. This paper emphasizes the need for feature engineering to effectively address this problem: containing the spread of fake news at the source, not after it has become globally prevalent. Insights from extracted features were used to manipulate the text, which was then tested on deep learning models. The original unknown yet substantial impact that the original features had on deep learning models was successfully depicted in this study.
Keywords:
Subject: Computer Science and Mathematics - Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.