Preprint
Article

Modulation Instability of Hydro-Elastic Waves Blown by a Wind with a Uniform Vertical Profile

Altmetrics

Downloads

109

Views

141

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

31 October 2021

Posted:

02 November 2021

You are already at the latest version

Alerts
Abstract
An interesting physical phenomenon was recently observed when a fresh-water basin is covered by a thin ice film that has properties similar to that of a rubber membrane. Surface waves can be generated under the action of wind on the air-water interface that contains an ice film. The modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown by the wind with a uniform vertical profile is studied here in terms of the air-flow velocity versus a wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of the nonlinear Schrödinger (NLS) equation with the help of the Lighthill criterion. The NLS equation is derived using the multiple scale method in the presence of airflow. It is demonstrated that the potentially unstable hydro-elastic waves with negative energy appear for relatively small wind speeds, whereas the Kelvin–Helmholtz instability arises when the wind speed becomes fairly strong. Estimates of parameters of modulated waves for the typical conditions are given.
Keywords: 
Subject: Physical Sciences  -   Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated