Preprint
Article

Stochastic Computing Emulation of Memristor Cellular Nonlinear Networks

Altmetrics

Downloads

326

Views

305

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 November 2021

Posted:

08 November 2021

You are already at the latest version

Alerts
Abstract
Cellular Nonlinear Networks (CNN) are a concept introduced in 1988 by Leon Chua and Lin Yang as a bio-inspired architecture, capable of massively parallel computation. Later on, CNN have been enhanced by incorporating designs that incorporate memristors to profit from their processing and memory capabilities. In addition, Stochastic Computing (SC) can be used to optimize the quantity of required processing elements; thus it provides a lightweight approximate computing framework, quite accurate and effective, though. In this work, we propose utilization of SC in designing and implementing a memristor-based CNN. As a proof of the proposed concept, an example of application is presented. This application combines Matlab and a FPGA in order to create the CNN. The implemented CNN has then been used to perform three different real-time applications on a 512x512 gray-scale and a 768x512 color image: storage of the image, edge detection, and image sharpening. It has to be pointed out that the same CNN has been used for the three different tasks, with the sole change of some programmable parameters. Results show an excellent capability with significant accompanying advantages, like the low number of needed elements further allowing for a low cost FPGA-based system implementation, something confirming the system’s ability for real time operation.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated