Applying a procedure similar to that of E.S. Bring, by using a 4th degree Tschirnhaus transformation, it was possible to transform the Bring-Jerrard normal quintic (BJQ) equation into a De Moivre form (DMQ), so that it could be solved by radicals. The general solution by radicals of the De Moivre equations of any degree is presented. By the same procedure the BJSx (normal sextic) equation was taken to another one without the 2nd, 4th and 6th terms which was transformed into a cubic (solvable) equation. By applying a 6th degree Tschirnhaus transformation to the BJSp (normal septic) equation its Bring-Jerrard binormal (without the 2nd, 3rd, 4th and 5th terms) form was obtained.
Keywords:
Subject: Computer Science and Mathematics - Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.