Preprint
Article

Mucilage of Coccinia grandis as an Efficient Natural Polymer-Based Pharmaceutical Excipient

Altmetrics

Downloads

179

Views

181

Comments

0

Submitted:

17 November 2021

Posted:

18 November 2021

You are already at the latest version

Alerts
Abstract
Mucilage from Coccinia grandis was extracted, isolated by maceration technique and precipitated, accordingly. The mucilage was evaluated for its physicochemical, binding, and disintegrant properties in tablets using paracetamol as a model drug. The crucial physicochemical properties such as flow properties, solubility, swelling index, loss on drying, viscosity, pH, microbial load, cytotoxicity were evaluated and the compatibility was analysed using sophisticated instrumental methods (TGA, DTA, DSC, and FTIR). The binding properties of the mucilage were used at three different concentrations and compared with starch and PVP as standard binders. The disintegrant properties of mucilage were used at two different concentrations and compared with standard disintegrants MCCP, SSG, and CCS. The wet granulation technique was used for the preparation of granules and was evaluated for the flow properties. The tablets were punched and evaluated for their hardness, friability, assay, disintegration time, in vitro dissolution profiles. In vitro cytotoxicity study of the mucilage was performed in human embryonic kidney (HEK) cell line using cytotoxic assay by MTT method. The outcome of the study indicated that the mucilage had good performance when compared with starch and PVP. Further, the mucilage acts as a good disintegrant than MCCP, SSG and CCS to paracetamol tablets. Moreover, the in vitro cytotoxicity evaluation results demonstrated that the mucilage is non-cytotoxic to human cells and is safe.
Keywords: 
Subject: Medicine and Pharmacology  -   Pharmacology and Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated