Preprint
Article

Meta-Analysis of Transcriptome-Wide Association Studies Across 13 Brain Tissues Identified Novel Clusters of Genes Associated with Nicotine Addiction

Altmetrics

Downloads

197

Views

149

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 November 2021

Posted:

22 November 2021

You are already at the latest version

Alerts
Abstract
Genome-wide association studies (GWAS) have identified and reproduced thousands of diseases associated loci but many of them are not directly interpretable due to the strong linkage disequilibrium among variants. Transcriptome-wide association studies (TWAS) incorporated expression quantitative trait loci (eQTL) cohorts as reference panel to detect associations with the phenotype at the gene level and were gaining popularity in recent years. For nicotine addiction, several important susceptible genetic variants were identified by GWAS, but TWAS that detected genes associated with nicotine addiction and unveiled the underlying molecular mechanism were still lacking. In this study, we used eQTL data from the Genotype-Tissue Expression (GTEx) consortium as reference panel to conduct tissue specific TWAS on cigarettes per day (CPD) over 13 brain tissues in two large cohorts: UK Biobank (UKBB; N=142,202) and the GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN; N=143,210), and then meta-analyzed the results across tissues while considering the heterogeneity across tissues. We identified three major clusters of genes with different meta-patterns across tissues consistent in both cohorts, including homogenous genes associated with CPD in all brain tissues, partially homogeneous genes associated with CPD in cortex, cerebellum and hippocampus tissues, and lastly the tissue-specific genes associated with CPD in only few specific brain tissues. Downstream enrichment analyses on each gene cluster identified unique biological pathways associated with CPD and provided important biological insights into the regulatory mechanism of nicotine dependence in the brain.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated