Preprint
Article

New Business and Operating Models. Optimization of a Blast Furnace in the Steel Industry. Machine Learning as a Process Optimization

Altmetrics

Downloads

400

Views

273

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

22 November 2021

Posted:

23 November 2021

You are already at the latest version

Alerts
Abstract
The article takes the case of the adoption of machine learning in a steel manufacturing process through a platform provided by a novel Canadian startup, Canvass Analytics. This way the steel company could optimize the process in a blast furnace. The content of the paper includes a conceptual framework on key factors around steel manufacturing and machine learning. Method: The article takes the case of the adoption of machine learning in a steel manufacturing process through a platform provided by a novel Canadian startup, Canvass Analytics. This way the steel company could optimize the process in a blast furnace. The content of the paper includes a conceptual framework on key factors around steel manufacturing and machine learning. Results: This case is relevant for the authors by the way the business model proposed by the startup attempts to democratize Artificial Intelligence and Machine Learning in industrial environments. This way the startup delivers value to facilitate traditional industries to obtain better operational results, and contribute to a better use of resources. Conclusion: This work is focused on opportunities that arise around Artificial Intelligence as a driver for new business and operating models. Besides the paper looks into the framework of the adoption of Artificial Intelligence and Machine Learning in a traditional industrial environment towards a smart manufacturing approach.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated