Space-time evolution of our universe is explained by using the 3-dimensional quantized space model (TQSM) based on the 4-dimensional (4-D) Euclidean space. The energy (E = cDtDV), charges and energy density (|q| = r = cDt) and absolute time (ct) are newly defined based on the 4-D Euclidean space. The photon flat space with the constant energy density of r = cDtq is proposed as the dark energy (DE). The dark energy is separated into the n DE and photon DE which create the new photon spaces with the constant energy density of r = cDtq. The v DE is from the n pair production by the CPT symmetry and the photon DE is from the photon space pair production by the T symmetry. The vacuum energy crisis and Hubble’s constant puzzle are explained by the photon space with the n DE and photon DE. The big bang and inflation of the primary black hole is connected to the accelerated space expansion and big collapse of the photon space through the universe evolution. The big bang from the nothing is the pair production of the matter universe with the positive energy and the partner anti-matter universe with the negative energy from the CPT symmetry. Our universe is the matter universe with the negative charges of electric charge (EC), lepton charge (LC) and color charge (CC). This first universe is made of dark matter -, lepton -, and quark - primary black holes with the huge negative charges which cause the Coulomb repulsive forces much bigger than the gravitational forces. The huge Coulomb forces induce the inflation of the primary black holes, that decay to the super-massive black holes and particles.
Keywords:
Subject: Physical Sciences - Particle and Field Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.