Preprint
Article

Hybrid Algorithm for Anomaly Removal in Time Series Data Mining

Altmetrics

Downloads

240

Views

229

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 November 2021

Posted:

23 November 2021

You are already at the latest version

Alerts
Abstract
Time series data are significant and are derived from temporal data, which involve real numbers representing values collected regularly over time. Time series have a great impact on many types of data. However, time series have anomalies. We introduce hybrid algorithm named novel matrix profile (NMP) to solve the all-pairs similarity search problem for time series data. The proposed NMP inherits the features from two state-of-the art algorithms: similarity time-series automatic multivariate prediction (STAMP), and short text online microblogging protocol (STOMP). The proposed algorithm caches the output in an easy-to-access fashion for single- and multidimensional data. The proposed NMP algorithm can be used on large data sets and generates approximate solutions of high quality in a reasonable time. The proposed NMP can also handle several data mining tasks. It is implemented on a Python platform. To determine its effectiveness, it is compared with the state-of-the-art matrix profile algorithms i.e., STAMP and STOMP. The results confirm that the proposed NMP provides higher accuracy than the compared algorithms.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated