Preprint
Article

Measurement of Dry and Autogenous Shrinkages and Thermal Strain of Early Age Concrete Pavement

Altmetrics

Downloads

229

Views

112

Comments

0

This version is not peer-reviewed

Submitted:

24 November 2021

Posted:

25 November 2021

You are already at the latest version

Alerts
Abstract
(1)Background: Early-age concrete shrinkage induces stress that impact the cost and service life of concrete pavements. (2)Methods: In this study, strain measurements of field slabs were conducted and a methodology was presented that independently derived autogenous, drying, and thermal shrinkages in the initial stages of concrete placement. Total strain was measured according to five different environmental conditions and shrinkage strain was calculated for each condition. (3)Results: By measuring the strain of the slab and the specimen, the drying shrinkage strain was measured to be approximately 54% better than that by the conventional non-stressed cylinder method because it was possible to measure the drying shrinkage strain at the surface rather than in the middle part of the slab along its depth direction. When the water-to-cement ratio increased (35→40%), there was a considerable reduction (317με→82με) of autogenous shrinkage strain for the concrete at 28 days of age. Furthermore, calculation of stress-dependent strain allowed the presentation of more intuitive and accurate results. (4)Conclusion: As the measurement of independent shrinkage occurrence is possible, the consequent calculated result of the stress-dependent strain acting on real slabs will facilitate improvement in the construction quality, reduction in the development of defects in the concrete structure, and increase in the service life.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated