Preprint
Article

Enhanced Mach-Zehnder Interferometer Multimode–Single-Mode–Multimode Fiber Optic Refractive Index Sensor Based on Surface Plasmon Resonance

Altmetrics

Downloads

395

Views

251

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 November 2021

Posted:

29 November 2021

You are already at the latest version

Alerts
Abstract
In this paper, an all-fiber Mach-Zehnder interferometer (MZI) sensor for refractive index (RI) measuring is presented, which is based on Multimode–Single-mode–Multimode (MSM) fiber. The effects of both reducing the radius of the sensing part and the surface plasmon resonance (SPR) on its efficiency are investigated. Increasing the interaction of high-order modes with external media, caused by etching the cladding layer of the single-mode fiber part, significantly improves the sensitivity. Both wavelength and intensity interrogation approaches are employed to study the Multimode–etched Single-mode–Multimode (MESM) fiber sensor. The intensity and the wavelength sensitivities for the RI measurement in the range of 1.428-1.458 are obtained as -2308.92 %/RIU and 1313.14 nm/RIU, respectively. Finally, the MESM-SPR sensor is proposed and characterized. Results exhibit high performance in the RI range of 1.333 to 1.357, in which the sensitivity of 1433 nm/RIU is achieved. The advantages like low cost, high sensitivity, and simple fabrication methods make these sensors promising devices for chemical, food industry, and biosensing applications.
Keywords: 
Subject: Physical Sciences  -   Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated