Preprint
Article

Peptidoglycan-Free Bacterial Ghosts Confer Enhanced Protection against Yersinia Pestis Infection

Altmetrics

Downloads

140

Views

207

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 November 2021

Posted:

30 November 2021

You are already at the latest version

Alerts
Abstract
To develop a modern plague vaccine, we used hypo-endotoxic Yersinia pestis bacterial ghosts (BGs) with combinations of genes encoding the bacteriophage ɸX174 lysis-mediating protein E and/or holin-endolysin systems from λ or L-413C phages. Expression of the protein E gene resulted in the BGs that retained the shape of the original bacterium. Co-expression of this gene with genes coding for holin-endolysin system of the phage L-413C caused formation of structures resembling collapsed sacs. Such structures, which have lost their rigidity, were also formed as a result of the expression of only the L-413C holin-endolysin genes. Similar holin-endolysin system from phage λ containing mutated holin gene S and intact genes R-Rz coding for the endolysins caused generation of mixtures of BGs that had (i) practically preserved and (ii) completely lost their original rigidity. The addition of protein E to the work of this system shifted the equilibrium in the mixture towards the collapsed sacs. The collapse of the structure of BGs can be explained by endolysis of peptidoglycan sacculi. Immunizations of laboratory animals with the variants of BGs followed by infection with a wild-type Y. pestis strain showed that bacterial envelopes protected only cavies. BGs with peptidoglycan maximally hydrolyzed had a greater protectivity compared to BGs with preserved peptidoglycan skeleton.
Keywords: 
Subject: Biology and Life Sciences  -   Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated