The world is facing a great technological transformation towards full autonomous vehicles, where optimists predict that by 2030, autonomous vehicles will be sufficiently reliable, affordable and common to displace most human driving. To cope with these trends, reliable perception systems must enable vehicles to hear and see all the surroundings, being light detection and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world in real time. However, perception systems must rely in accurate measurements of the environment. Thus, sensors must be calibrated and benchmarked before being placed on the market or assembled in a car. This article presents an Evaluation and Testing Platform for Automotive LiDAR sensors with the main goal of testing not only commercially available sensors, but also sensor prototypes currently under development in Bosch Automotive Electronics division. The testing system can benchmark any LiDAR sensor under different conditions, recreating the expected driving environment to which such devices are normally subjected. To characterize and validate the sensor under test, the platform evaluates several parameters such as the field of view (FoV), angular resolution, sensor’s range, etc. This project results from a partnership between the University of Minho and Bosch Car Multimedia Portugal, S.A.
Keywords:
Subject: Engineering - Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.