When presenting special relativity, it is customary to single out the so-called paradoxes. One of these paradoxes is the formal occurrence of speeds exceeding the speed of light. An essential part of such paradoxes arises from the incompleteness of the relativistic calculus of velocities. In special relativity, the additive group is used for velocities. However, the use of only group operations imposes artificial restrictions on possible computations. Naive expansion to vector space is usually done by using non-relativistic operations. We propose to consider arithmetic operations in the special theory of relativity in the framework of the Cayley–Klein model for projective spaces. We show that such paradoxes do not arise in the framework of the proposed relativistic extension of algebraic operations.
Keywords:
Subject: Computer Science and Mathematics - Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.