Preprint
Article

Function Computation Under Privacy, Secrecy, Distortion, and Communication Constraints

This version is not peer-reviewed.

Submitted:

07 December 2021

Posted:

08 December 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The problem of reliable function computation is extended by imposing privacy, secrecy, and storage constraints on a remote source whose noisy measurements are observed by multiple parties. The main additions to the classic function computation problem include 1) privacy leakage to an eavesdropper is measured with respect to the remote source rather than the transmitting terminals’ observed sequences; 2) the information leakage to a fusion center with respect to the remote source is considered as a new privacy leakage metric; 3) the function computed is allowed to be a distorted version of the target function, which allows to reduce the storage rate as compared to a reliable function computation scenario in addition to reducing secrecy and privacy leakages; 4) two transmitting node observations are used to compute a function. Inner and outer bounds on the rate regions are derived for lossless and lossy single-function computation with two transmitting nodes, which recover previous results in the literature. For special cases that include invertible and partially-invertible functions, and degraded measurement channels, exact lossless and lossy rate regions are characterized, and one exact region is evaluated for an example scenario.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

172

Views

134

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated