Submitted:

01 February 2022

Posted:

03 February 2022

Read the latest preprint version here

Abstract
Intracranial hemorrhage is a serious medical problem that requires rapid and often intensive medical care. Identifying the location and type of any hemorrhage present is a critical step in the treatment of the patient. Diagnosis requires an urgent procedure, and the detection of hemorrhage is a difficult and time-consuming process for human experts. In this paper, we propose methods based on EfficientDet’s deep-learning technology that can be applied to the diagnosis of hemorrhages and thus become a decision-support system. Our proposal is two-fold. On the one hand, the proposed technique classifies slices of computed tomography scans for the presence hemorrhage or its lack, achieving 92.7% accuracy and 0.978 ROC-AUC. On the other hand, our methodology provides visual explanations of the classification chosen using the Grad-CAM methodology.
Keywords: 
Subject: 
Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated