Preprint
Article

Characterising Penetrometer Tip Contact during Concrete Condition Assessment

Altmetrics

Downloads

142

Views

74

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 December 2021

Posted:

13 December 2021

You are already at the latest version

Alerts
Abstract
Concrete condition assessing penetrometers need to be able to distinguish between making contact with a hard (concrete) surface as opposed to a semi-solid (corroded concrete) surface. If a hard surface is mistaken for a soft surface, concrete corrosion may be over-estimated, with the potential for triggering unnecessary remediation works. Unfortunately, the variably-angled surface of a concrete pipe can cause the tip of a force-sensing tactile penetrometer to slip and thus to make this mistake. We investigated whether different shaped tips of a cylindrical penetrometer were better than others at maintaining contact with concrete and not slipping. We designed a range of simple symmetric tip shapes, controlled by a single superellipse parameter. We performed a finite element analysis of these parametric models in SolidWorks before machining in stainless steel. We tested our penetrometer tips on a concrete paver cut to four angles at 20∘ increments. The results indicate that penetrometers with a squircle-shaped steel tip (a=b=1,n=4) have the least slip, in the context of concrete condition assessment.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated