This paper considered the issue of agricultural fields boundary recognition in satellite images. A novel algorithm based on the aggregated history of vegetation index data obtained via open satellite data, Sentinel-2, was proposed. The proposed algorithm included several basic steps, namely the detection of parcel regions on aggregated index data; the calculation of aggregated edge maps; the segmentation of parcel regions using the edges obtained; the computation of connected components and their contour extraction. In this paper, we showed that the use of aggregated vegetation index data and boundary maps allow for much more accurate agricultural field segmentation compared to the instant vegetation index approach. The quality of segmentation within regions of Russia and the Ukraine was estimated. The dataset that was used and Python implementation of the proposed algorithm were provided.
Keywords:
Subject: Computer Science and Mathematics - Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.