Preprint
Article

Transfer Learning for Operator Selection: A Reinforcement Learning Approach

Altmetrics

Downloads

145

Views

105

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

17 December 2021

Posted:

21 December 2021

You are already at the latest version

Alerts
Abstract
In the past two decades, metaheuristic optimization algorithms (MOAs) have been increasingly popular, particularly in logistic, science, and engineering problems. The fundamental characteristics of such algorithms are that they are dependent on a parameter or a strategy. Some online and offline strategies are employed in order to obtain optimal configurations of the algorithms. Adaptive operator selection is one of them, and it determines whether or not to update a strategy from the strategy pool during the search process. In the filed of machine learning, Reinforcement Learning (RL) refers to goal-oriented algorithms, which learn from the environment how to achieve a goal. On MOAs, reinforcement learning has been utilised to control the operator selection process. Existing research, however, fails to show that learned information may be transferred from one problem-solving procedure to another. The primary goal of the proposed research is to determine the impact of transfer learning on RL and MOAs. As a test problem, a set union knapsack problem with 30 separate benchmark problem instances is used. The results are statistically compared in depth. The learning process, according to the findings, improved the convergence speed while significantly reducing the CPU time.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated