The effects of ELICE16INDURES, a well-known plant conditioner developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalasz, Hungary, were studied in a soybean population. The active ingredients of the compound have been selected to help elicit general immunity in plants without pathogenic damage, thereby roborizing the healthy plant population and preparing it for possible future biotic stressors. Here we have analyzed changes in the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways that induce and regulate PAMP-triggered immunity (PTI) at two different time points and treatments. Twenty-three different enzymes were analyzed that catalyze different metabolic pathways, such as the biosyntheses of jasmonic acid, salicylic acid, ethylene, phenylpropanoid, flavonoid, and phytoalexin biosynthesis and cellular detoxification processes. Bioinformatical softwares werw used to analyze the results. It has been found that some of the primary defense mechanisms (e.g., Mitogen-Activated-Protein Kinase (MAPK) cascade, jasmonic acid biosynthesis, flavonoid and phytoalexin biosynthesis, etc.) that intensify following the attack of pathogens can be activated without the intrusion of the actual pathogen by an immunochemical. Thus, we proved that plant resistance can be artificially conditioned.
Keywords:
Subject:
Biology and Life Sciences - Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.