Preprint
Article

Interfacial Stabilities, Electronic Properties and Interfacial Fracture Mechanism of 6H-SiC Reinforced Copper Matrix studied by the First Principles Method

Altmetrics

Downloads

120

Views

81

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 December 2021

Posted:

22 December 2021

You are already at the latest version

Alerts
Abstract
The interfacial mechanics and electrical properties of the SiC reinforced copper matrix composites were studied via the first principles method. The work of adhesion (Wad) and the interfacial energies were calculated to evaluate the stabilities of the SiC/Cu interfacial models. The carbon terminated (CT)-SiC/Cu interfaces were predicted more stable than those of the silicon terminated (ST)-SiC/Cu from the results of the Wad and interfacial energies. The interfacial electron properties of SiC/Cu were studied via the charge density distribution, charge density difference, electron localized functions and partial density of the state. The covalent C-Cu bonds were formed based on the results of the electron properties, which further explained the fact that the interfaces of the CT-SiC/Cu are stable than those of the ST-SiC/Cu. The interfacial mechanics of the SiC/Cu were investigated via the interfacial fracture toughness and ultimate tensile stress, and the results indicate that both CT- and ST-SiC/Cu interfaces are hard to fracture. The ultimate tensile stress of the CT-SiC/Cu is nearly 23GPa, which is smaller than those of the ST-SiC/Cu of 25 GPa. The strains corresponding to their ultimate tensile stresses of the CT- and ST-SiC/Cu are about 0.28 and 0.26, respectively. The higher strains of CT-SiC/Cu indicate their stronger plastic properties on the interfaces of the composites.
Keywords: 
Subject: Chemistry and Materials Science  -   Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated