Preprint
Article

Realization of Phase and Microstructure Control in Fe/Fe2SiO4-FeAl2O4 Metal-Ceramic by Alternative Microwave Susceptors

Altmetrics

Downloads

164

Views

266

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 January 2022

Posted:

06 January 2022

You are already at the latest version

Alerts
Abstract
This study provides a novel method to prepare metal-ceramic composites from magnetically selected iron ore using microwave heating. By introducing three different microwave susceptors (Activated Carbon, SiC, and a mixture of Activated Carbon and SiC) during the microwave process, effective control of the ratio of metallic and ceramic phases has been achieved easily. The effects of the three susceptors on the microstructure of the metal-ceramics and the related reaction mechanisms were also investigated in detail. The results show that the metal phase (Fe) and ceramic phase (Fe2SiO4, FeAl2O4) can be maintained, but the metal phase to ceramic phase changed significantly. In particular, the microstructures appeared as well-distributed nanosheet structures with diameters of ~400 nm and thicknesses of ~20 nm when SiC was used as the microwave susceptor.
Keywords: 
Subject: Chemistry and Materials Science  -   Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated