Preprint
Article

EmmDocClassifier: Efficient Multimodal Document Image Classifier for Scarce Data

Altmetrics

Downloads

272

Views

4302

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 January 2022

Posted:

06 January 2022

You are already at the latest version

Alerts
Abstract
Document classification is one of the most critical steps in the document analysis pipeline. There are two types of approaches for document classification, known as image-based and multimodal approaches. The image-based document classification approaches are solely based on the inherent visual cues of the document images. In contrast, the multimodal approach co-learns the visual and textual features, and it has proved to be more effective. Nonetheless, these approaches require a huge amount of data. This paper presents a novel approach for document classification that works with a small amount of data and outperforms other approaches. The proposed approach incorporates a hierarchical attention network(HAN) for the textual stream and the EfficientNet-B0 for the image stream. The hierarchical attention network in the textual stream uses the dynamic word embedding through fine-tuned BERT. HAN incorporates both the word level and sentence level features. While the earlier approaches rely on training on a large corpus (RVL-CDIP), we show that our approach works with a small amount of data (Tobacco-3482). To this end, we trained the neural network at Tobacco-3428 from scratch. Thereby, we outperform state-of-the-art by obtaining an accuracy of 90.3%. This results in a relative error reduction rate of 7.9%.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated