Preprint
Article

Nanotechnology Applications Towards Sustainable Road Sur-face Maintenance and Effective Asset Protection, Generating Rapid Employment Opportunities in a Post COVID-19 Era

Altmetrics

Downloads

1428

Views

751

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

24 January 2022

Posted:

25 January 2022

You are already at the latest version

Alerts
Abstract
: Nanotechnology options to road surface maintenance offers several advantages compared to traditionally used materials. The small particle sizer of hydrophobic Nano-Silane modified Nano-Polymers (NSNP) enables these nanotechnology products to deeply penetrate existing road surfaces, sealing micro-cracks and render surfacings to be water-resistant for extended periods of time. In comparison, traditionally used products contain minimum partial sizes of about 1 – 5 microns, that provide a superficial protection that wears off in a relatively short period of time. These traditional products are often associated with vehicle contamination while drying and requires the re-instatement of road markings. None of these disadvantages are associated with applicable NSNP technologies that are quick drying, with no vehicle contamination risks and is equivalent to a “clear-seal” requiring no reinstatement of road markings. In a similar vein, pot-hole repairs can be done using applicable, easy to use, pre-packed and treated pot-hole repair kits that are water-repellent and quick-drying at a fraction of the costs of conventional cold-mix products. Resurfacing using NME binder slurries can be done labour-intensively on a pre-treated NSNP surfacing, restoring cracked surfacing and providing a water-resistant long-lasting protective layer without the removal of existing cracked areas. The implementation of nanotechnology solutions for road surface maintenance operations is directly associated with ease of use, labour-intensive operations, prevention of considerable deterioration in riding quality due to removal and manual re-instatement of cracked surfaces, time and cost savings and a reduction in the risk of water damage to the sub-structure. TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated