Skin cancer is an exquisite disease globally nowadays. Because of the poor contrast and apparent resemblance between skin and lesions, automatic identification of skin cancer is complicated. The rate of human death can be massively reduced if melanoma skin cancer can be detected quickly using dermoscopy images. In this research, an anisotropic diffusion filtering method is used on dermoscopy images to remove multiplicative speckle noise and the fast-bounding box (FBB) method is applied to segment the skin cancer region. Furthermore, the paper consists of two feature extractor parts. One of the two features extractor parts is the hybrid feature extractor (HFE) part and another is the convolutional neural network VGG19 based CNN feature extractor part. The HFE portion combines three feature extraction approaches into a single fused feature vector: Histogram-Oriented Gradient (HOG), Local Binary Pattern (LBP), and Speed Up Robust Feature (SURF). The CNN method also is used to extract additional features from test and training datasets. This two-feature vector is fused to design the classification model. This classifier performs the classification of dermoscopy images whether it is melanoma or non-melanoma skin cancer. The proposed methodology is performed on two ordinary datasets and achieved the accuracy 99.85%, sensitivity 91.65%, and specificity 95.70%, which makes it more successful than previous machine learning algorithms.
Keywords:
Subject: Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.