1) We shall discuss what modern interpretations say about the Heisenberg's uncertainties. These interpretations explain that a quantity begins to 'lose' meaning when a conjugate property begins to 'acquire' definite meaning. We know that a quantity losing meaning means that it has no fixed value and has an uncertainty . In this paper we look deeper into this interpretation and the outcome reveals more evidence of the quantity losing meaning. Newer insights appear. 2) We consider two extreme cases of hypothetical processes nature undergoes, without interference by a measurement: One, a system collapses to an energy eigenstate under the influence of a Hamiltonian instantaneously at a time $t$. This is thus what would happen if we would measure the system's energy. Next, when a particle becomes localised to a point at a time $t_0$ under the influence of a Hamiltonian. This is thus what would happen if we would measure the system's position. We shall prove that both these situations cannot arise under ordinary circumstances and thus measurement processes cannot be modelled by physical Hamiltonians.
Keywords:
Subject: Physical Sciences - Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.