Preprint
Article

Copper Oxide/ Functionalized Graphene Hybrid Nanostructures for Room Temperature Gas Sensing Applications

Altmetrics

Downloads

300

Views

325

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

19 January 2022

Posted:

20 January 2022

You are already at the latest version

Alerts
Abstract
Oxide semiconductors are conventionally being used as sensing materials in gas sensors, limiting the detection of gases at room temperature (RT). In this work, a hybrid of copper oxide (CuO) with functionalized graphene (rGO) is proposed to achieve gas sensing at RT. The combination of high surface area and presence of many functional groups in CuO/rGO hybrid material makes it highly sensitive for gas absorption and desorption. To prepare the hybrid material, a copper oxide suspension synthesized using copper acetate precursor is added to the graphene oxide solution during its reduction using ascorbic acid. Material properties of CuO/rGO hybrid and its drop-casted thin films are investigated using Raman, FTIR, SEM, TEM, and four-point probe measurement systems. We find that the hybrid material is enriched with oxygen functional groups (OFGs) and defective sites along with electrical conductivity (~1.5 kΩ/□). The fabricated QCM (quartz crystal microbalance) sensor with a thin layer of CuO/rGO hybrid, demonstrates a high sensing response which is twice the response of the rGO-based sensor for CO2 gas at RT. We believe that the CuO/rGO hybrid can be highly suitable for existing and future gas sensors used for domestic and industrial safety.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated