Preprint Article Version 14 Preserved in Portico This version is not peer-reviewed

Vacuum Expansion and Collapse Inside an Infinite Shell

Version 1 : Received: 18 January 2022 / Approved: 20 January 2022 / Online: 20 January 2022 (11:11:44 CET)
Version 2 : Received: 28 January 2022 / Approved: 31 January 2022 / Online: 31 January 2022 (12:56:14 CET)
Version 3 : Received: 16 March 2022 / Approved: 17 March 2022 / Online: 17 March 2022 (10:54:26 CET)
Version 4 : Received: 20 March 2022 / Approved: 21 March 2022 / Online: 21 March 2022 (08:59:59 CET)
Version 5 : Received: 1 May 2022 / Approved: 4 May 2022 / Online: 4 May 2022 (12:51:42 CEST)
Version 6 : Received: 15 May 2022 / Approved: 16 May 2022 / Online: 16 May 2022 (12:17:54 CEST)
Version 7 : Received: 20 May 2022 / Approved: 23 May 2022 / Online: 23 May 2022 (10:35:10 CEST)
Version 8 : Received: 30 May 2022 / Approved: 31 May 2022 / Online: 31 May 2022 (09:11:40 CEST)
Version 9 : Received: 18 July 2022 / Approved: 19 July 2022 / Online: 19 July 2022 (10:32:16 CEST)
Version 10 : Received: 30 August 2022 / Approved: 31 August 2022 / Online: 31 August 2022 (14:35:15 CEST)
Version 11 : Received: 28 September 2022 / Approved: 29 September 2022 / Online: 29 September 2022 (10:04:38 CEST)
Version 12 : Received: 20 October 2022 / Approved: 21 October 2022 / Online: 21 October 2022 (11:18:22 CEST)
Version 13 : Received: 29 December 2022 / Approved: 4 January 2023 / Online: 4 January 2023 (12:00:14 CET)
Version 14 : Received: 7 January 2023 / Approved: 9 January 2023 / Online: 9 January 2023 (11:01:51 CET)
Version 15 : Received: 12 February 2023 / Approved: 13 February 2023 / Online: 13 February 2023 (16:12:56 CET)
Version 16 : Received: 10 March 2023 / Approved: 13 March 2023 / Online: 13 March 2023 (09:47:07 CET)
Version 17 : Received: 21 July 2023 / Approved: 21 July 2023 / Online: 24 July 2023 (08:08:52 CEST)
Version 18 : Received: 17 March 2024 / Approved: 19 March 2024 / Online: 19 March 2024 (12:58:11 CET)
Version 19 : Received: 12 June 2024 / Approved: 13 June 2024 / Online: 13 June 2024 (09:35:50 CEST)
Version 20 : Received: 5 July 2024 / Approved: 8 July 2024 / Online: 9 July 2024 (07:06:37 CEST)

How to cite: Laforet, C. Vacuum Expansion and Collapse Inside an Infinite Shell. Preprints 2022, 2022010301. https://doi.org/10.20944/preprints202201.0301.v14 Laforet, C. Vacuum Expansion and Collapse Inside an Infinite Shell. Preprints 2022, 2022010301. https://doi.org/10.20944/preprints202201.0301.v14

Abstract

The FRW model of cosmology assumes a Universe with uniform pressure and density everywhere in space at a given time. But at the largest scales, the Universe has a web-like structure surrounding large voids, violating these assumptions. Furthermore, a given region of spacetime is describable only by a single metric and therefore it cannot be that the Universe is modelled as an FRW perfect fluid since this would be the incorrect description of both the web and the voids. The cosmic web must be described by metrics with non-zero energy-momentum tensors with non-uniform pressure and density describing the matter within it. Therefore, the model of cosmology describing the expansion of the Universe must be a vacuum solution describing the empty spaces in the Universe surrounded by an infinite, massive shell (the surrounding Universe). The internal Schwarzschild metric is that model. The source of the Schwarzschild metric is shown to be at the event horizon, a location/time of infinite density, not at the singularity, as it is currently assumed. The spatial homogeneity of the metric is demonstrated by visualizing the geometry in the extrinsic "Kruskal-Szekeres" coordinates (visualized in 1+2 dimensions). Using the coordinate age of the Universe and transition redshift, this predicts the accelerated expansion, the Hubble diagram fits currently available cosmological data, and it gives a Hubble constant H0 of 71.6km/s/Mpc. The angular term of the metric describes the relativistic kinematic precession effect known as Thomas Precession which can be interpreted as spin about the time dimension.

Keywords

Cosmology; Black holes; Dark Energy; Schwarzschild metric

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (1)

Comment 1
Received: 9 January 2023
Commenter: Christopher Laforet
Commenter's Conflict of Interests: Author
Comment: - Updated title and abstract
- Added content to the end of section II discussing the extrinsic nature of the Kruskal coordinates as well as providing a presentist perspective of the external metric using the Kruskal coordinate chart.
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.