Preprint
Article

Event-Based Clustering with Energy Data

Altmetrics

Downloads

159

Views

244

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 January 2022

Posted:

20 January 2022

You are already at the latest version

Alerts
Abstract
This paper describes a stochastic clustering architecture that is used in the paper for making predictions over energy data. The design is discrete, localised optimisations based on similarity, followed by a global aggregating layer, which can be compared with the recent random neural network designs, for example. The topic relates to the IDEAS Smart Home Energy Project, where a client-side Artificial Intelligence component can predict energy consumption for appliances. The proposed data model is essentially a look-up table of the key energy bands that each appliance would use. Each band represents a level of consumption by the appliance. This table can replace disaggregation from more complicated methods, usually constructed from probability theory, for example. Results show that the table can accurately disaggregate a single source to a set of appliances, because each appliance has quite a unique energy footprint. As part of predicting energy consumption, the model could possibly reduce costs by 50% and more than that if the proposed schedules are also included. The hyper-grid has been changed to consider rows as single units, making it more tractable. A second case study considers wind power patterns, where the grid optimises over the dataset columns in a self-similar way to the rows, allowing for some level of feature analysis.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated