Preprint
Article

Particle Size of Biochar as Co-composted Fertilizer: Influence on Growth Performance of Lettuce and Concentration of Bioavailable Soil Nutrients under Salinity Stress Conditions

Altmetrics

Downloads

351

Views

395

Comments

0

Submitted:

19 January 2022

Posted:

24 January 2022

You are already at the latest version

Alerts
Abstract
This pot-based study investigated the influence of co-composted wood-derived biochar on lettuce growth performance under salinity and drought stress conditions. Biochar of two particle sizes; > 2 mm and < 1 mm were co-composted with the mixture (1:1 ratio of dry weight) of cow and poultry manures. Co-composted biochars were applied at 5% and 7% rates in soil. Control treatments included the amendment of mixture of biochar with manure in soil. Pots were subjected to slight drought (48-55% water filled pore space (WFPS) of soil) and non-drought conditions (60% WFPS) and under 0 and 1.3 dS m-1 salinity. Results revealed that plants growth performance was significantly better under treatments of co-composted biochar and no salt stress conditions, than when mixture of biochar and manure was applied to soil as non-composted fertilizer. Under no stress condition, small particle-sized co-composted biochar increased root biomass by 786.2% than the large particle-sized co-composted biochar at same application rate. As compared to large-sized co-composted biochar, small sized co-composted biochar at high application rates increased root biomass by 167 – 245% but not leaf biomass under both stress conditions. Small particle-sized co-composted biochar amendment also increased the phosphorus use efficiency (PUE) of lettuce leaves than large particle-sized co-composted biochar under no stress condition. The amendment of small-sized co-composted biochar also increased significantly the concentration of Olsen phosphorus in soil than the amendment of large-particle-sized co-composted biochar. In conclusion, amendment of small particle-sized co-composted biochar has the potential of attenuating salinity and drought stress in lettuce and promoting P cycling in soil.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated