Preprint
Article

Effects of Data Quality and Quantity on Deep Learning for Protein-Ligand Binding Affinity Prediction

Altmetrics

Downloads

624

Views

633

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

23 May 2022

Posted:

23 May 2022

You are already at the latest version

Alerts
Abstract
Prediction of protein-ligand binding affinities is crucial for computational drug discovery. A number of deep learning approaches have been developed in recent years to improve the accuracy of such affinity prediction. While the predicting power of these systems have advanced to some degrees depending on the dataset used for model training and testing, the effects of the quality and quantity of the underlying data have not been thoroughly examined. In this study, we employed erroneous datasets and data subsets of different sizes, created from one of the largest databases of experimental binding affinities, to train and evaluate a deep learning system based on convolutional neural networks. Our results show that data quality and quantity do have significant impacts on the prediction performance of trained models. Depending on the variations in data quality and quantity, the performance discrepancies could be comparable to or even larger than those observed among different deep learning approaches. In particular, the presence of proteins during model training leads to a dramatic increase in prediction accuracy. This implies that continued accumulation of high-quality affinity data, especially for new protein targets, is indispensable for improving deep learning models to better predict protein-ligand binding affinities.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated